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*60 Introduction 

The exponential growth exhibited in the technology sector worldwide has provided businesses and consumers with a myriad 
of computer programs and computer-based devices that have significantly altered and improved our everyday lives. Whereas 
the copyright laws of the United States have attempted to keep pace with these rapid technological advances, in certain 
instances, such has not been the case.1 One such area involves the extent of copyright protection for application program 
interfaces (“APIs”).2 Whereas APIs have been implicated as important segments of major international lawsuits involving 
large, multi-national corporations such as Microsoft,3 few scholars have addressed whether, and to what extent, APIs are 
protected under the copyright laws.4 



 

 

  
*61 In this essay, I will discuss whether APIs are protected under the copyright laws of the United States and, for those 
instances where APIs are protected, the level of protection afforded. Additionally, I will consider the defense of fair use as it 
relates to copyright infringement claims regarding APIs. 
  

I. What is an API? 

The term API includes “[s]oftware that an application program uses to request and carry out lower-level services performed 
by the computer’s . . . operating system.”5 In particular, APIs include header files, data structure information, call *62 
mapping information, function prototypes, variables, parameters and constants,6 data and file format specifications, function 
calls,7 screen displays, function name calls, and other information8 required to develop application programs which 
interoperate with an operating system.9 Essentially, an API ensures that all applications are consistent with the underlying 
operating system and have a similar user interface with that system.10 
  
*63 Standardization of APIs at various layers of a software program provides a uniform way to write applications.11 As such, 
APIs provide the standard environment, including tools, protocols, and other routines, in which programs can be written.12 
APIs are a set of standard software interrupts, calls, and data formats that application programs use to initiate contact with 
network services, mainframe communications programs, telephone equipment or program-to-program communications.13 
  
*64 Essentially, APIs are specifications which facilitate the communication between various aspects of a computer program. 
Specifically, APIs are the exact “method prescribed by a computer operating system or by an application program by which a 
programmer writing an application program can make requests of the operating system or another application.”14 
  

II. How APIs May Be Copied 

Understanding the role that APIs play in a computer program, and how they may be copied, is best illustrated through a 
paradigm. Assume that Company A is the manufacturer of a handheld personal data assistant (“PDA”). In addition to 
manufacturing the actual PDA device, Company A creates software applications that run on its device. Company B, on the 
other hand, is not in the business of creating devices, but rather is a software developer. Company B sees great potential in 
the device created by Company A, and determines that it can produce software compatible with Company A’s device that is 
far superior to the software produced by Company A. Assuming that Company A does not grant Company B any rights to use 
the software or device created by Company A, the most common and efficient method by which Company B will be able to 
design software that will be compatible with Company A’s device is through decompilation of Company A’s software. 
  
*65 Decompilation is a form of reverse engineering.15 Under the copyright laws, Company B is permitted to decompile 
Company A’s software program and create its own software based on the information obtained from the decompilation 
process.16 Decompilation techniques were initially used in the 1960s to aid in the migration of computer programs from one 
platform to another.17 To decompile is to convert executable program code, sometimes referred to as object code, into some 
form of higher-level programming language so that the code can be read by a human.18 The tool that accomplishes this 
conversion is called a decompiler.19 
  
*66 In addition to reverse engineering for the purpose of developing compatible software, there are a number of different 
reasons for decompilation, such as understanding the mechanics of a program, recovering the source code for purposes of 
archiving or updating a program, finding viruses, debugging programs and translating obsolete code.20 As a result of the 
mechanics of reverse engineering and computer programming, intermediate copies of APIs are created during the 
decompilation process.21 Accordingly, when a computer program is decompiled without the permission of the copyright 
holder of the program, a claim for copyright infringement may be introduced.22 
  

*67 III. Copyright Protection for APIs 

The copyright laws of the United States were enacted by Congress under its Constitutional mandate to “promote the Progress 
of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective 
Writings and Discoveries.”23 The copyright laws are codified in the Copyright Act of 1976, 17 U.S.C. §§ 101.24 By 
amendment in 1980, the Copyright Act specifically includes computer programs as proper subjects of copyright protection.25 



 

 

As with all subjects of copyright, computer programs are protectable only to the extent that they incorporate authorship in a 
programmer’s original expression of ideas, as distinguished from the ideas themselves.26 
  
Copyrighted software typically contains both protected expression and unprotected or functional elements.27 Whereas the 
copyright laws of the United States generally do not protect functional aspects of works, processes, systems or methods *68 
of operation, computer programs are inherently functional works and the most important and creative aspects of computer 
programs are often the procedures, processes, systems or methods of operation.28 With respect to APIs, although it is an 
incorrect statement of law that interface specifications are not copyrightable as a matter of law, external considerations, such 
as compatibility, often negate a finding of infringement.29 Various courts have held that such program interfaces are 
functional elements of a software program, and thus may not be deemed protected expression under the Copyright laws, 
while other courts have determined that copyright protection for APIs is warranted.30 As such, a careful examination of the 
case law is required in order to understand the scope and extent of copyright protection for APIs. 
  

A. Cases Indicating Copyright Protection for APIs is Not Warranted 

A number of federal courts have held that copyright protection for APIs is not warranted.31 One theory, adopted by the 
Eleventh Circuit, reasons that, to the extent that copying of APIs is required for purposes of compatibility, copyright 
protection *69 is not appropriate.32 Similarly, other courts have held that, where the structure of a program’s APIs is dictated 
by external factors, or where the structure of a program’s APIs merges with the underlying function of the program itself, a 
claim of copyright infringement will not be upheld.33 
  
In Bateman v. Mnemonics, Inc., Mnemonics created an application program that was designed to be interoperable with 
Bateman’s system.34 As with all programs that seek to interoperate with another system, Mnemonics’s interface specifications 
had to be functionally identical to those found in Bateman’s program.35 In particular, Mnemonics utilized system calls found 
in Bateman’s software in order to allow Mnemonics’s software to effectively communicate with Bateman’s system.36 In this 
respect, the Eleventh Circuit was faced with the question of whether interface specifications between an operating system and 
applications written to run under that operating system are protectable under the copyright laws.37 Although the court did not 
issue a definitive answer on the issue of copyright protection for Bateman’s APIs, it indicated that copying for purposes of 
compatibility may negate copyright liability, since compatibility-required elements are not copyrightable.38 In this respect, 
Bateman stands for the proposition that, to the extent that APIs are necessary for compatibility, they may not be the basis for 
a copyright infringement claim.39 
  
Analogous to the facts surrounding Bateman are those presented to the court in Mitel Inc. v. Iqtel, Inc.40 In Mitel, a federal 
district court in Colorado held that command codes used to program a manufacturer’s telephone call controller were *70 not 
copyrightable.41 The command codes in Mitel involved three and four digit numbers or letters that engaged a particular 
function of the call controller, such as automatic redial or speed dialing.42 Although the command codes were not directly 
accessed by the telephone companies that bought the devices or by the telephone service customers, they were used by 
technicians who programmed the controllers in the process of installation.43 Once the devices were coded and installed, 
telephone service customers were able to access the functionalities that the call controllers enabled, though the telephone 
customers did not themselves enter the call controller codes.44 
  
Iqtel did not dispute that it had copied Mitel’s three and four digit command codes for use in its telephone call controller.45 
Rather, Iqtel maintained that, for its call controller to be competitive, it had to be compatible with Mitel’s call controller, 
since Mitel had 75% to 90% of the call controller market and technicians expressed reluctance to learn new command 
codes.46 Mitel responded by arguing that its codes constituted protected expression because they represented a creatively 
chosen set of alpha-numeric codes.47 Iqtel countered by characterizing the command codes as an unprotectable method of 
operation under 17 U.S.C. § 102(b), and claimed that the scenes a faire and fair use doctrines also precluded a claim for 
copyright infringement.48 The court agreed with Iqtel, holding that the command codes were not subject to copyright 
protection because they were “a procedure, process, system, and method of operation.”49 
  
*71 The command codes at issue in Mitel may be analogized to APIs.50 Once programmed, the call controller codes were 
continually and automatically invoked by the system.51 Further, with respect to functionality, the command codes were the 
only codes that were recognized by the call controllers.52 In this respect, the command codes are similar to technical interface 
elements, such as header names, in that both are comprised of sets of short terms that technical personnel must program into a 
device or program in order to invoke an underlying functionality.53 Thus, whereas the Bateman court held that APIs that are 



 

 

necessary for compatibility purposes may not be the basis for a copyright infringement claim, the court’s ruling in Mitel 
indicates that the copyright laws do not afford APIs protection in circumstances where the APIs are properly characterized as 
a method of operation.54 
  
Building on Bateman and Mitel is Baystate Technologies, Inc. v. Bentley Systems, Inc., which provides the strongest 
argument against copyright protection for APIs.55 In Baystate, the court held that the data structure names and the 
organization of data structures of a computer program were not protected by the copyright laws.56 Baystate held copyrights 
for a mechanical computer aided design (“CAD”) program.57 By utilizing computers as drafting devices, CAD programs 
“enable architects, engineers and other design professionals to design and alter the design of buildings, mechanical devices 
and electronic equipment.”58 
  
*72 Bentley Systems, a competitor in the market for CAD programs, sought to create a translator program which was to 
employ certain elements from Baystate’s software.59 The district court identified the copied elements of Baystate’s software 
as the “names of the so-called data structures . . . and the organization of the files within the data structures,” including, 
“more specifically, the words and abbreviations used to describe the files contained within the data structures and the data 
structures themselves.”60 These structures were found in the header files of Baystate’s program.61 
  
The court noted that the Copyright Act defines a computer program as “a set of statements or instructions to be used directly 
or indirectly in a computer in order to bring about a certain result.”62 In this respect, the court reasoned, the overall computer 
program comprising the allegedly infringed work was copyright protected.63 However, since the data structures at issue in the 
case did not bring about any result on their own, the court indicated, “they were copyright protected, if at all, only as a part of 
the whole computer program.”64 With respect to the APIs, the court held that the data file names were unprotected because 
the APIs merged with the underlying idea or function of the program, and that, based on the scenes a faire doctrine, copyright 
protection was not warranted for the organization of the data files.65 
  
The merger doctrine bars protection of the “data structure names or, more specifically, the words and abbreviations used to 
describe the files contained within the data structures and the data structures themselves.”66 According to the Baystate court, 
whereas the data structure names were independently created and were original expression, there was evidence that “the 
name of a file is typically related to its function.”67 As the court reasoned, under the scenes a faire doctrine, copyright 
protection does not extend to elements of a computer program that have been dictated by external factors.68 For computer 
software, the court noted, such “external factors *73 include, among other things, compatibility requirements and 
industry-wide programming practices.”69 In Baystate, the court concluded that “the selection and organization of the elements 
in the data files is dictated mainly by external factors.”70 As the court indicated: 

[T]he product being developed is a data translator that is designed to “read” the data files of CADKEY. 
The process of “reading” the CADKEY data files requires that the elements contained within the data 
structures of the Translator be organized in the same manner as the elements in the data structures of 
CADKEY.71 

  
  
Thus, the court held that the inability of the translator to function unless it was compatible means that the structures devised 
by the original author were not protected by the copyright laws.72 The court bolstered its conclusion that the structures were 
not copyrightable with further references to the needs of the copier: “[T]he organization of [file] names is, at least partly, a 
function of efficiency,” because “the names and arrangement of those names serve a functional and necessary purpose in the 
code of a data translator.”73 
  
Although the bulk of the Baystate court’s copyright analysis is devoted to the issue of protectability, the court briefly 
considered whether the data structures had been infringed, assuming for the sake of argument that the data structures were 
protectable.74 In other words, the court considered whether the copying of data structures represented extensive enough 
copying to render the two works substantially similar.75 The court concluded that they were not sufficiently similar because 
data structures represented “neither a substantial portion nor a significant aspect of the whole copyrighted work.”76 The expert 
testimony presented in the case demonstrated that, “although data structures are generally a necessary component of a 
computer program for organizational and efficiency purposes, the original naming of the data structures takes very little of 
the total time or creative genius necessary to develop a program.”77 Furthermore, the court noted that the data structures were 
not, by themselves, executable.78 Thus, although the importance of a program *74 component is not strictly a function of 
quantity, the evidence in Baystate demonstrated that the data structures were only a fraction of the total CADKEY program, 
and that copying of the data structures would not have made the two programs substantially similar.79 



 

 

  
Taken together, Bateman, Mitel and Baystate provide persuasive arguments against copyright protection for APIs.80 In 
particular, the cases stand for the position that, to the extent that copying of APIs is necessary for purposes of compatibility, a 
claim of copyright infringement will not be upheld.81 Moreover, the cases indicate that the merger and scenes a faire doctrines 
are such that a claim of copyright protection for APIs, where the APIs merge with the underlying program or are dictated by 
external forces, is not defensible.82 In other words, the copyright laws do not encompass situations where the structure of a 
program’s APIs is dictated by external factors or where the structure of the APIs merges with the underlying function of the 
program itself.83 
  
Notwithstanding the fact that APIs may not be deemed protected expression for a particular computer program, however, a 
company may not make a verbatim copy of copyrighted software.84 As such, where the commands and structure of a 
computer program are highly functional, a virtually identical copy of the program may be a basis for a copyright infringement 
claim.85 
  

B. Cases Indicating Copyright Protection for APIs is Warranted 

In light of the analyses behind the decisions in Baystate, Bateman and Mitel, it would seem difficult to imagine that a 
company could successfully argue that the APIs of a particular computer program constitute protectable expression under the 
*75 copyright laws.86 To the contrary, this position is significantly strengthened by decisions of several federal district and 
circuit courts.87 
  
In granting plaintiff’s motion for a preliminary injunction, the court in Control Data Systems, Inc. v. Infoware, Inc. held that 
defendant’s emulator program likely infringed copyrights in the technical interface and source code of Control Data’s 
network operating system (“NOS”).88 Infoware’s program was designed to permit application software that was originally 
written for Control Data’s Cyber computers and operating system to be used with the hardware of other manufacturers.89 The 
alleged similarities between the NOS operating system and defendant’s emulator software included: (1) 2,000 lines of copied 
NOS source code; (2) the NOS input and output formats; (3) NOS file layouts; (4) NOS source code parameters; and (5) 
NOS commands.90 
  
Since much of the evidence presented in Control Data Systems was produced pursuant to a protective order, the opinion of 
the court sets forth only a limited description of the facts.91 In this respect, the factual basis of the court’s decision is not 
entirely clear.92 Nevertheless, from the facts available in the public record, it appears that the district court primarily relied on 
the source code copying, though the court did not discuss or analyze whether the other elements constituted protectable 
expression under the copyright laws.93 In particular, the discussion in Control Data Systems focuses on whether the merger 
doctrine precludes a claim of copyright infringement, such that Infoware was required to create a NOS-compatible operating 
system in order to compete in the relevant market.94 
  
*76 The court held that, based on the facts of the case, the merger doctrine did not preclude a claim for copyright 
infringement by Control Data Systems, since the elements at issue were not dictated by the underlying computer code.95 In 
other words, the program created by Control Data did not represent the only way to make a Cyber-compatible operating 
system.96 In this respect, the court’s discussion in Control Data Systems may be reasonably construed to extend copyright 
protection for APIs to instances where the APIs are not dictated by the need for interoperability with an underlying computer 
program.97 
  
In addition to Control Data Systems, CMAX/Cleveland, Inc. v. UCR, Inc. provides support for the proposition that APIs may 
be afforded protection under the copyright laws.98 Plaintiff CMAX owned the copyright for a computer program called 
“RMAX,” which was used to input, store, process and retrieve information related to the rent-to-own furniture and appliance 
business.99 In an effort to avoid CMAX’s license fees, UCR, who had originally licensed CMAX’s software, set out to 
develop its own program that would perform the same functions as RMAX and be compatible with files and records 
previously created using RMAX.100 To this end, UCR developed a program of identical design to RMAX for its own use.101 In 
order to ensure compatibility with its existing RMAX data files, UCR studied the file structure and file names of the RMAX 
program and replicated them in its own program.102 In addition, UCR replicated many of RMAX’s screens and reports.103 
  
The court ruled that the file layouts or structures, record layouts, file names, naming conventions, transaction codes, screens 
and reports of the RMAX program constituted protectable expression because they were not dictated by industry standards, 



 

 

by efficiency, or by the need for the program to interact with the central host *77 computer with which it was designed to 
operate.104 Indeed, although the court was not entirely clear about which elements constituted aspects of the user interface or 
the technical interface, some of the elements which the court held were protectable expression are properly characterized as 
APIs.105 
  
For instance, the file structures in the case included file names, sequences of fields, and field names or field definitions.106 The 
court found that these structures for inputting data were not dictated by market forces and that it was not functionally required 
that they follow a particular order.107 The court further held that, since such file structures collect and organize information 
entered by the user, they are not merely blank forms, and that there is protectable expression in the selection and arrangement 
of the field definitions.108 In this respect, the field names and sequences function as APIs.109 
  
In addition, the CMAX court held that the screens, reports and transaction codes constituted protected expression.110 With 
respect to the screens and reports, since the field definition sequence in the screens and reports was not dictated by the 
industry, and since the data fields could have been arranged in any number of ways, they represented protected expression.111 
Further, whereas screens and reports are user interface elements, in that the user sees and works with these elements when 
entering data and reviewing results as part of the stored files, these elements become a technical interface insofar as they are 
used and can be read by other programs.112 Similarly, with respect to the transaction codes, the court determined that, since 
they were a major element of the program’s design and were not dictated by efficiency or industry demands, they were 
protected by the program’s copyrights.113 As defined by the court, transaction codes are equivalent to APIs: “A transaction 
code is a randomly selected, alphanumeric sequence of characters that indicates to the computer what steps should be 
executed in a given situation or ‘transaction’ when the code is transmitted.”114 However, it is apparently the end *78 user of 
the program that directly employs the transaction codes.115 In this respect, the transaction codes are similar to the Mitel 
telephone system command codes in that the transaction codes are analogous to header names or other technical interface 
elements.116 Accordingly, the court’s reasoning in CMAX indicates that copyright protection extends to APIs in instances 
where the APIs are not dictated by industry standards, by efficiency, or by the need for a program to interact with the central 
host computer with which it was designed to operate.117 
  
Similar to the court in CMAX, the court in Consul Tec v. Interface Systems, Inc. held that, since a great deal of original, 
creative effort was expended in the creation of Interface’s computer program, Interface had enforceable copyrights in the 
“unique compilation of commands, its command line syntax, and its status message codes, all of which constitute[d] unique, 
creative expression, which [was] separable from the program’s ‘idea.”’118 Whereas the Consul Tec court focused on the user 
interface of the program, it noted that, to the extent computer programs “manifest original expression, the copyright 
protection encompasses literal as well as non-literal aspects, including a program’s source and object code, flowcharts, 
‘structure, sequence and organization’ or ‘overall structure’ of the program.”119 In this respect, Consul Tec supplements the 
CMAX court’s holding--specifically, to the extent that APIs are not dictated by industry standards, by efficiency, or by the 
need for a program to interact with a central host computer with which it was designed to operate, copyright protection is 
warranted.120 
  
Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc. provides additional support for the proposition that the structure, 
sequence and organization of a computer *79 program may be protected under the copyright laws.121 In Whelan, the Third 
Circuit reasoned that, since the purpose or function of a utilitarian work (which encompasses computer programs) is the 
work’s idea, everything that is not necessary to that purpose or function is part of the expression of the idea.122 As such, where 
there are various means of achieving a desired purpose and the particular means chosen is not necessary to the purpose, 
protection is afforded under the copyright laws.123 In this respect, Whelan provides support for the proposition that, to the 
extent that APIs are integral to the structure and organization of a software program, the APIs may be deemed protected 
expression under the copyright laws.124 
  
Building on the decisions in CMAX, Consul Tec, and Whelan is Engineering Dynamics, Inc. v. Structural Software, Inc.125, a 
case which involves input formats employed by end-users.126 In Engineering Dynamics, the Fifth Circuit held that the input 
formats of an application program designed to solve structural engineering *80 problems constituted copyrightable subject 
matter.127 Engineering Dynamics defined a specific set of input formats for use with its program, in which the user could enter 
the required data, including construction details and anticipated environmental and other external forces.128 In creating its own 
software, Structural Software copied many of Engineering Dynamics’s input formats.129 The Fifth Circuit found the input 
formats to be protected by the copyright laws, and thus reversed the district court’s ruling that the input formats were 
uncopyrightable.130 
  



 

 

The court described the input formats as “quasi-textual,” consisting of a “series of words and a framework of instructions that 
act as prompts” to the user to provide relevant data to the program so it can perform a series of sophisticated structural 
analyses.131 The court stated that “generally, functional interfaces that directly teach or guide the user’s independent decisions 
are more expressive than functional interfaces that lack these qualities.”132 Based on its finding that plaintiff’s interface 
“imparts knowledge” by telling the user which data to collect as well as the order of collection, the court concluded that 
plaintiff’s input formats showed enough original expression to warrant copyright protection.133 Although the input formats 
ruled protectable were part of the user interface, and it was the copyright in the user manual which the court held was 
infringed, the input formats, when stored, become embodied in file formats, which are part of the technical interface.134 
  
In this respect, the interface ruled protectable in Engineering Dynamics includes both user interfaces and technical 
interfaces.135 Since the holding that the formats are protectable relies on the user interface aspect of the formats, in that they 
impart knowledge to the user, it may be argued that Engineering Dynamics also protects the formats as embodied in the 
technical interface of the program, despite the fact that the court did not discuss or rule on the protectability of the technical 
interface in isolation from the user aspects.136 
  
*81 Accordingly, the decisions in Control Data Systems, CMAX, Consul Tec, Whelan, and Engineering Dynamics support 
the contention that APIs may qualify as protected expression under the copyright laws.137 Specifically, where there is 
evidence that APIs are not dictated by industry standards, efficiency or the need for a program to interact with a central host 
computer, copyright protection is warranted.138 Moreover, a claim for copyright infringement of APIs may be upheld in 
circumstances where the APIs are not dictated by the need for interoperability with an underlying computer program.139 
Similarly, to the extent APIs manifest original expression or are integral to the structure and organization of a software 
program, a claim for copyright infringement is defensible.140 
  
As it is evident from a review of the relevant case law, courts have adopted various approaches when faced with the question 
of copyright protection for APIs.141 Nevertheless, assuming a company were successful in arguing that its APIs qualify as 
protected expression under the copyright laws, a competitor may be able to successfully offer a defense that copying of the 
APIs constitutes fair use.142 The fair use defense will now be discussed. 
  

IV. Fair Use and the Creation of Intermediate Copies of APIs 

For purposes of this section of the essay, assume that Company B created intermediate copies of Company A’s APIs in the 
process of creating its own software through decompilation of Company A’s software. Under the Copyright Act, disassembly 
of copyrighted object code may be considered fair use of the copyrighted work if such disassembly provides the only means 
of access to those elements of the work that are not protected by copyright and the copier has a legitimate reason *82 for 
seeking such access.143 However, whereas the copyright laws may permit Company B to reverse engineer Company A’s 
software, strict guidelines govern the method of reverse engineering that Company B may employ and the extent of 
information that Company B is permitted to copy.144 
  
Copyrighted software programs typically contain both copyrighted expression and unprotected, functional elements.145 
Software engineers who seek to design a product that is compatible with a copyrighted product must frequently reverse 
engineer the copyrighted product in order to gain access to the functional elements of the copyrighted work.146 Accordingly, 
courts have consistently held that, where reverse engineering is necessary to examine the unprotected ideas and functional 
concepts of a copyrighted work, and intermediate copies of the work are created during the reverse engineering process, 
Section 107 of the Copyright Act may serve to permit the copying as fair use.147 
  
In determining whether a challenged use of copyrighted material is fair, courts have emphasized the public policy underlying 
the Copyright Act.148 Whereas the immediate effect of the copyright laws is to secure a fair return for an author’s creative 
labor, the ultimate aim is to stimulate artistic creativity for the general public good.149 The court in Sega Enterprises, Ltd. v. 
Accolade, Inc. outlined *83 the factors to consider when analyzing a defense of fair use.150 These factors include: 
(1) The purpose and character of the use, including whether such use is of commercial nature or is for nonprofit educational 
purposes; 
  
(2) The nature of the copyrighted work; 
  
(3) The amount and substantiality of the portion used in relation to the copyrighted work as a whole; and 



 

 

  
(4) The effect of the use upon the potential market for or value of the copyrighted work.151 As the Sega court notes, “The 
statutory factors are not exclusive.”152 Rather, the doctrine of fair use is “an equitable rule of reason.”153 Each statutory factor 
will now be discussed in detail. 
  
  

A. Purpose and Character of Use 

With respect to the first statutory factor, the court in Sega Enterprises, Ltd. v. Accolade, Inc. noted that the fact that copying 
is committed for a commercial purpose weighs against a finding of fair use.154 However, such a commercial purpose does not 
in itself create a presumption of unfairness, but rather is a single factor that weighs in that direction.155 For instance, courts are 
free to consider the public benefit resulting from a particular use, notwithstanding the fact that the alleged infringer may gain 
commercially.156 As was the case in Sega, Accolade’s identification of the functional requirements for compatibility, which it 
discovered through disassembly of Sega’s copyrighted object code, led to an increase in the number of independently 
designed video game programs offered for use with the Sega game console.157 
  
Similarly, in Connectix, Connectix’s commercial use of Sony’s copyrighted material--whereby Connectix reverse-engineered 
Sony’s software for its PlayStation game console to produce a product that would be compatible with games designed for the 
PlayStation--was an intermediate one, and thus was only deemed *84 “indirect or derivative” use.158 As the Ninth Circuit 
noted, “it is precisely this growth in creative expression, based on the dissemination of other creative works and the 
unprotected ideas contained in those works, that the Copyright Act was intended to promote.”159 
  
The court in Connectix approached the first statutory factor by questioning whether Connectix’s use “merely supercedes the 
objects of the original creation, or instead adds something new, with a further purpose or different character, altering the first 
with new expression, meaning, or message.”160 In other words, the court sought to determine whether, and to what extent, the 
new work is transformative.161 Since Connectix’s work created a new platform (specifically, a personal computer running its 
software) on which customers could play games designed for Sony’s PlayStation, the court found Connectix’s work to be 
“modestly transformative.”162 That is, Connectix’s innovation afforded the opportunity for games to be played in a new 
environment.163 Further, notwithstanding the similarity of uses and functions between the Sony PlayStation and Connectix’s 
Virtual Game Station, Connectix’s work resulted in an entirely new product.164 
  
Accordingly, the first statutory factor requires a careful examination of the nature and function of the copied work and a 
determination of the relative value of the new product created in terms of benefit to the public.165 Thus, with respect to APIs, 
courts must clearly identify the particular functionalities of the copied APIs and their relative role in the overall computer 
program, while balancing the public benefit of the newly created product. 
  

B. Nature of Copyrighted Work 

The second statutory factor reflects the fact that not all copyrighted works are entitled to the same level of protection.166 The 
protection established by the Copyright Act does not extend to the ideas underlying a work or to the functional or factual 
aspects of the work.167 As the Sega court notes, “To the extent that a work is *85 functional or factual, it may be copied, as 
may those expressive elements of the work that ‘must necessarily be used as incident to’ expression of the underlying ideas, 
functional concepts, or facts.”168 
  
As a result of the nature of computer programs, they present unique problems for the application of the idea/expression 
dichotomy.169 To the extent that there may exist a number of methods by which a particular task or demand may be fulfilled, a 
software developer’s choice of program structure and design may be highly creative, and thus protected.170 However, since 
computer programs are utilitarian articles, they often “contain many logical, structural and visual display elements that are 
often dictated by the function to be performed, by considerations of efficiency, or by external factors such as compatibility 
requirements and industry demands.”171 
  
In this respect, the hybrid nature of computer programs prevents a universal standard for distinguishing protected expression 
from unprotected ideas. Under Third Circuit law, for instance, “the idea or function of a computer program is the idea of the 
program as a whole, and everything that is not necessary to that purpose or function [is] part of the expression of that idea.”172 



 

 

As the court in Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc. highlighted, “among the more significant costs in 
computer programming are those attributable to developing the structure and logic of the program.”173 Accordingly, the court 
held that copyright protection extends beyond the literal computer code, thus providing “the proper incentive for 
programmers by protecting their most valuable efforts, while not giving them a stranglehold over the development of new 
computer devices that accomplish the same end.”174 
  
Other courts, such as the Ninth Circuit, apply a somewhat different test.175 In particular, these courts break down a computer 
program into its component subroutines, and individually identify the idea and functional elements of each subroutine.176 The 
remaining elements, if any, are deemed expression, and are afforded *86 copyright protection.177 With respect to computer 
programs, an analysis of the second statutory factor invariably raises the question of whether the methods used to reverse 
engineer the copyrighted work were necessary to gain access to the unprotected functional elements within the program.178 
  
In Dun & Bradstreet Software Services, Inc. v. Grace Consulting, Inc, the Third Circuit set aside a jury verdict and granted 
judgment as a matter of law on Dun & Bradstreet’s claim of copyright infringement, where Grace created a competitive 
software package after copying and modifying Dun & Bradstreet’s program.179 In its opinion, the court reasoned that, since 
Grace’s software would not work without the copied portion of Dun & Bradstreet’s program, the information Grace copied 
was highly critical and thus a reasonable basis for a copyright infringement claim.180 As the court noted, the Copyright Act 
grants a copyright owner the exclusive right to create derivative works that are based upon the work that is copyright 
protected.181 Since a derivative work is defined as “a new created work based on the original copyrighted work,” and Grace’s 
program utilized copies of Dun & Bradstreet’s copyrighted computer code, the court found Grace’s program to be an 
infringing derivative work.182 The court was not persuaded by Grace’s claim that it copied the relevant portions of Dun & 
Bradstreet’s copyrighted software for purposes of interoperability.183 
  
Thus, with respect to APIs, to the extent that APIs are purely functional elements of a computer program, the second 
statutory factor would support a defense of fair use.184 On the other hand, where APIs play a critical role in the development 
and functionality of a computer program, the nature of the copyrighted work is such that a fair use defense is not likely to be 
upheld.185 
  

*87 C. Amount and Substantiality of Copyrighted Work Used 

The third statutory factor analyzes the “amount and substantiality of the portion copied in relation to the copyrighted work as 
a whole.”186 Courts have generally not given much weight to this factor.187 For instance, in Connectix, the alleged infringer 
disassembled parts of the plaintiff’s product and copied the software of the entire product multiple times.188 Nonetheless, the 
court held that such intermediate copying, when the final product does not itself contain infringing material, is of very little 
weight.189 Similarly, the court in Sega stated that the fact that an entire work has been copied does not preclude a finding of 
fair use.190 
  
In this respect, the amount and substantiality of the APIs copied is not likely to support or preclude a defense of fair use.191 
Rather, the ultimate determination is likely to rest with factors that relate to whether the portions copied were for purposes of 
compatibility or as a means of creating a derivative work.192 
  

D. Effect on Potential Market 

The fourth statutory factor bears close relationship to the “purpose and character” inquiry.193 Specifically, it serves to 
accommodate the distinction between copying of works for the purpose of furthering creative expression and exploiting the 
fruits of another’s creative efforts.194 Under the fourth factor, courts must inquire whether, if the challenged use became 
widespread, it would adversely affect the potential market for the copyrighted work, by diminishing potential sales, 
interfering with marketability, or usurping the market.195 If the copying resulted in the latter effect, all other considerations 
may be irrelevant.196 However, the same consequences do not attach to a use which simply enables the copier to enter the 
market for works of the same type as the copied work.197 
  
*88 For example, the court in Sega held that Accolade did not attempt to “scoop” Sega’s release of any particular game, but 
rather sought to become a legitimate competitor in the field of Sega-compatible video games.198 As such, the minor economic 
loss that Sega may have suffered was not sufficient to bar Accolade’s fair use claim.199 Similarly, in Connectix, the court 



 

 

reasoned that, “whereas a work that merely supplants or supercedes another is likely to cause a substantially adverse impact 
on the potential market of the original, a transformative work is less likely to do so.”200 Since the court found that Connectix’s 
Virtual Game Station was transformative, and not merely a work that supplanted Sony’s Playstation console, the impact on 
the potential market was not such that it precluded a finding of fair use.201 
  
On the other hand, where an alleged infringer’s work is neither creative nor transformative, and does not provide the 
marketplace with a new creative work, a fair use defense will fail.202 In Triad Systems Corp. v. Southeastern Express Co., the 
Ninth Circuit found that the defendant did not make minimal use of plaintiff’s software solely to achieve compatibility with 
plaintiff’s computers.203 Rather, the court held, the defendant copied plaintiff’s software and invented nothing new of its 
own.204 In this respect, it “undoubtedly diminished the value of [plaintiff’s] copyright.”205 As the court indicated, if 
independent service organizations like the defendant freely used copyrighted software on a widespread basis to compete with 
the plaintiff, “this would likely cause a significant adverse impact on [plaintiff’s] licensing and service revenues and lower 
returns on its copyrighted software investment.”206 Thus, there is no public benefit that would justify a fair use defense in such 
instances.207 
  
Accordingly, the fair use defense does not justify extensive efforts to profit from replicating protected expression.208 Further, 
intermediate copying does not *89 extend to commercial exploitation of protected expression.209 As such, the fair use 
reproductions of a computer program must not exceed what is necessary to understand the unprotected elements of the 
copyrighted work.210 As the Atari court explains, “This limited exception is not an invitation to misappropriate protectable 
expression.”211 The reproduction of protectable expression, pursuant to the fair use exception, “must be strictly necessary to 
ascertain the bounds of protected information within the work.”212 
  

Conclusion 

As a review of the relevant case law indicates, the extent of copyright protection afforded to APIs varies considerably 
depending on the specifics of the underlying computer program and the nature and function of the APIs with respect to that 
program.213 To the extent APIs are not dictated by industry standards, efficiency or the need for a program to interact with a 
central host computer, they are likely to be afforded protection under the copyright laws.214 Similarly, copyright protection for 
APIs is warranted in circumstances where the APIs manifest original expression is not integral to the structure and 
organization of a software program.215 
  
On the other hand, the copyright laws do not protect instances where the structure of a program’s APIs is dictated by external 
factors or where the structure of the APIs merges with the underlying function of the program itself.216 Likewise, to the extent 
that copying of APIs is necessary for purposes of compatibility, a claim for copyright infringement is not likely to be 
upheld.217 In situations where copying of APIs may be the basis for a claim of copyright infringement, the fair use doctrine 
may be utilized as a defense.218 For these cases, a thorough examination of the nature of the APIs, in relation to the underlying 
computer program, must be the *90 focus of the analysis of the statutory factors which form the basis of the fair use 
defense.219 
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basic ideas of a copyrighted work. Id. See also Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 599 (9th Cir. 2000). 
Fair use is discussed infra, Section V. 
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subject matter are useful or utilitarian. This type of approach impractically restricts copyright protection to the useless and 
valueless aspects of the computer subject matter. Thus the “useful article” doctrine holds little promise as “the” test for computer 
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